Lewis base-catalyzed conjugate reduction and reductive aldol reaction of α , β -unsaturated ketones using trichlorosilane[†]

Masaharu Sugiura,* Norimasa Sato, Shunsuke Kotani and Makoto Nakajima*

Received (in Cambridge, UK) 2nd May 2008, Accepted 3rd June 2008 First published as an Advance Article on the web 17th July 2008 DOI: 10.1039/b807529h

Lewis bases such as $Ph_3P=O$ and HMPA catalyze the 1,4reduction of α , β -unsaturated ketones with trichlorosilane, and because the 1,2-reduction of aldehydes scarcely proceeded under the conditions, one-pot reductive aldol reactions with aldehydes were successfully achieved; preliminary studies using a chiral Lewis base revealed a high potential for enantioselective catalysis.

Conjugate reduction of α , β -unsaturated carbonyl compounds and subsequent one-pot reactions with electrophiles such as aldehydes are efficient synthetic tactics in organic synthesis. In these processes, transition metals are typically utilized as catalysts with silane or borane reductants.¹ Recently, organocatalytic variants of conjugate reduction (chiral secondary amines as catalysts and Hantzsch esters as stoichiometric reducing agents) have been reported,² but subsequent reactions with electrophiles have yet to be fully explored.³ Herein, we report an alternative methodology for organocatalytic conjugate reduction of enones and subsequent reactions with aldehydes (reductive aldol reactions). The method employs phosphorus oxide (P=O) compounds as Lewis base-catalysts and trichlorosilane as a reductant.^{4–6}

We hypothesized that if a suitable Lewis base activates the silane, the 1,4-reduction may proceed selectively *via* a six-membered transition state, and with the assistance of the same Lewis base, the generated trichlorosilyl enolate should react with coexisting aldehyde electrophile.⁷ Therefore, we investigated the reduction of benzalacetone (1a) with trichlorosilane in the presence of a catalytic amount of various Lewis bases (Scheme 1).⁸ Reduction was not observed in the absence of catalyst, but 1,2-reduction mainly occurred upon the addition of DMF [2a (2%), 3a (43%)]. On the other hand, 1,4-reduction proceeded selectively when DMPU [2a (11%), 3a (<1%)], Ph₃P=O [2a (64%), 3a (0%)], or HMPA [2a (99%), 3a (0%)] was used as the Lewis

Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan. E-mail: msugiura@kumamoto-u.ac.jp; nakajima@gpo.kumamoto-u.ac.jp † Electronic supplementary information (ESI) available: General procedures and spectroscopic data. See DOI: 10.1039/b807529h

base-catalyst. *N*,*N*-Dimethylacetamide, isoquinoline *N*-oxide and DMSO showed a negligible catalytic activity.

Thus, with effective catalysts in hand, conjugate reduction of various α , β -unsaturated ketones was examined (Table 1). The reactions were performed in the presence of HMPA (20 mol%) at 0 °C or rt. Acyclic β -monosubstituted enones

 Table 1
 HMPA-catalyzed conjugate reduction of various enones^a

	Ĵ	R ⁴ HSiCl ₃ (2 equ HMPA (20 mo	iv) O R ⁴ I%) ↓ ↓	
	R^1 Υ R^2	CH ₂ Cl ₂ conditions	$\mathbb{R}^{1^{\circ}}$ \mathbb{R}^{2}	R³
Entry	Enone	R^1, R^2, R^3, R^4	Conditions	Yield (%)
1	1a	Me, H, Ph, H	0 °C, 30 min	87
2	1b	Ph, H, Ph, H	0 °C, 30 min	91
3	1c	Ph, H, Me, H	0 °C, 30 min	72
4	1d	Ph	0 °C, 60 min	80
5	1e	Me Me Me	0 °C, 4 h then rt, 2 h	93
6	1f	Me Me Me	0 °C, 30 min	94
7	1g	Ph, H, Ph, Me	$0 ^{\circ}$ C, 5 h then rt, 19 h	74
8	1h	Ph, Me, H, H	$0 ^{\circ}C$, 9 h then rt, 17 h	60
9	1i	Ph	0 °C, 30 min	89
10	1j	Ph	0 °C, 40 min	82
11	1k		0 °C, 4 h then rt, 16 h	84 ^{<i>b</i>}

^{*a*} All reactions were carried out by addition of trichlorosilane (2.0 mmol) to a solution of an enone (1.0 mmol) and HMPA (0.2 mmol) in CH_2Cl_2 (2 mL) at 0 °C or rt. ^{*b*} trans : cis = 1.7 : 1.

 Table 2
 Lewis base-catalyzed reductive aldol reaction^a

R ¹	R^{2} R ³	+ U R5	HSiCl ₃ (2 e catalyst (20 CH ₂ Cl ₂ condition	$ \begin{array}{ccc} \text{quiv}) & O \\ \text{mol}\%) & & \\ \hline & & R^1 \\ \hline & & R^n \\ \text{ns} & & R \end{array} $	OH R ⁵ R ³
Entry	Enone	R ⁵	Catalyst	Conditions	$\operatorname{Yield}^{b}(\%)$
1	1b	Ph	HMPA	0 °C, 4 h	52
2	1b	Ph	Ph ₃ P=O	0 °C, 4 h	78
3	1b	p-MeOC ₆ H ₄	Ph ₃ P=O	0 °C, 4 h	69
4	1b	$p-NO_2C_6H_4$	Ph ₃ P=O	0 °C, 4 h	72
5	1b	$Ph(CH_2)_2$	Ph ₃ P=O	rt, 24 h	19
6	1c	Ph	Ph ₃ P=O	0 °C, 4 h	70
7	1f	Ph	Ph ₃ P=O	0 °C, 5 h	65
8	1h	Ph	HMPA	rt, 24 h	39

^{*a*} All reactions were carried out by addition of trichlorosilane (1.0 mmol) to a solution of an enone (0.5 mmol), an aldehyde (0.6 mmol) and a Lewis base-catalyst (0.1 mmol) in CH_2Cl_2 (2 mL) at 0 °C or rt. ^{*b*} Isolated as diastereomeric mixtures except for entry 8.

Scheme 2 Enantioselective catalysis.

gave the 1,4-reduction products in high yields with exclusive 1,4-selectivity (entries 1–6), while β - and/or α -disubstituted enones required extended reaction time (entries 7, 8 and 11). The 1,4-reduction of one enone moiety proceeded regioselectively even when substrates had an additional olefin moiety (entries 4, 5, 6 and 10). Exocyclic enones gave 1,4-reduction products smoothly (entries 9, 10 and 11), whereas an endocyclic enone, 3-phenyl-2-cyclohexenone, showed low reactivity. These observations strongly suggest the importance of the *s*-cis configuration in the transition state.⁹

HMPA or Ph_3P =O scarcely promoted the 1,2-reduction of benzaldehyde under these conditions. Thus, three-component reactions of enones, aldehydes and trichlorosilane (reductive aldol reactions) proceeded smoothly in the presence of a Lewis base-catalyst to afford the corresponding aldol products in good yield (Table 2).¹⁰ For the reaction of chalcone (**1b**) with benzaldehyde, Ph_3P =O catalyst showed better activity than HMPA (entries 1 and 2). Reactions of **1b** with electrondonating and -withdrawing benzaldehyde derivatives also afforded good yields, but reaction with an aliphatic aldehyde gave a low yield (entries 3–5). Reactive enones **1c** and **1f** provided good results (entries 6 and 7), but enone **1h** having low reduction activity resulted in a low yield (entry 8). Preliminary studies using a chiral Lewis base (BINAPO)¹¹ revealed a high potential for enantioselective catalysis of the reactions (Scheme 2). Although HMPA required an extended reaction time at rt for the reduction of enone **1g** (see Table 1, entry 7), the asymmetric reduction using BINAPO proceeded smoothly at 0 °C to give a high enantioselectivity. On the other hand, the asymmetric reductive aldol reaction of β -ionone (**1f**) with benzaldehyde at -78 °C provided both high diastereoand enantioselectivities. The *syn*-diastereoselectivity can be ascribed to the formation of the (*Z*)-trichlorosilyl enolate⁹ followed by Lewis base-catalyzed aldol reaction *via* a chair-like transition state.^{11,12}

In summary, we have demonstrated Lewis base-catalyzed conjugate reduction of α , β -unsaturated ketones with trichlorosilane and subsequent one-pot reactions with aldehydes. Further studies on the enantioselective catalysis as well as extension to other related reactions are currently in progress.

Notes and references

- For leading references on metal-catalyzed reductive aldol reactions, see: (a) A. Revis and T. K. Hilty, *Tetrahedron Lett.*, 1987, 28, 4809; (b) S. Isayama and T. Mukaiyama, *Chem. Lett.*, 1989, 2005; (c) S. Kiyooka, A. Shimizu and S. Torii, *Tetrahedron Lett.*, 1998, 39, 5237; (d) T. Ooi, K. Doda, D. Sakai and K. Maruoka, *Tetrahedron Lett.*, 1999, 40, 2133; (e) C.-X. Zhao, M. O. Duffey, S. J. Taylor and J. P. Morken, *Org. Lett.*, 2001, 3, 1829; (f) H.-Y. Jang, R. R. Huddleston and M. J. Krische, *J. Am. Chem. Soc.*, 2002, 124, 15156; (g) I. Shibata, H. Kato, T. Ishida, M. Yasuda and A. Baba, *Angew. Chem., Int. Ed.*, 2004, 43, 711.
- (a) J. W. Yang, M. T. H. Fonseca and B. List, Angew. Chem., Int. Ed., 2004, 43, 6660; (b) J. W. Yang, M. T. H. Fonseca, N. Vignola and B. List, Angew. Chem., Int. Ed., 2005, 44, 108; (c) S. G. Ouellet, J. B. Tuttle and D. W. C. MacMillan, J. Am. Chem. Soc., 2005, 127, 32; (d) N. J. A. Matrin and B. List, J. Am. Chem. Soc., 2006, 128, 13368; For related reactions based on non-metal-catalyzed hydrostannation, see: (e) T. Kawakami, M. Miyatake, I. Shibata and A. Baba, J. Org. Chem., 1996, 61, 376; (f) D. S. Hays, M. Scholl and G. C. Fu, J. Org. Chem., 1996, 61, 6751.
- 3 A catalytic asymmetric reductive Michael cyclization has been reported, see: J. W. Yang, M. T. H. Fonseca and B. List, J. Am. Chem. Soc., 2005, **127**, 15036.
- 4 Trichlorosilane has been utilized for (asymmetric) 1,2-reduction of aldehydes, ketones, aldimines and ketimines in combination with (chiral) Lewis base-catalysts. For leading references, see: (a) S. Kobayashi, M. Yasuda and I. Hachiya, Chem. Lett., 1996, 407; (b) F. Iwasaki, O. Onomura, K. Mishima, T. Maki and Y. Matsumura, Tetrahedron Lett., 1999, 40, 7507; (c) Y. Matsumura, K. Ogura, Y. Kouchi, F. Iwasaki and O. Onomura, Org. Lett., 2006, 8, 3789; (d) A. V. Malkov, A. Mariani, K. N. MacDougall and P. Kočovský, Org. Lett., 2004, 6, 2253; (e) A. V. Malkov, A. J. P. Stewart Liddon, P. Ramírez-López, L. Bendová, D. Haigh and P. Kočovský, Angew. Chem., Int. Ed., 2006, 45, 1432; (f) L. Zhou, Z. Wang, S. Wei and J. Sun, Chem. Commun., 2007, 2977.
- 5 Cobalt(II) chloride-catalyzed 1,4-reduction of enones or acryl esters with trichlorosilane has been reported, see: M. Chauhan and P. Boudjouk, *Can. J. Chem.*, 2000, **78**, 1396. For a palladium-catalyzed reductive aldol reaction with trichlorosilane, see ref. 1*c*.
- 6 A patent that describes a formamide-catalyzed conjugate reduction of enones with the silane has been reported, see: Y. Matsumira and F. Iwasaki, *Jpn. Pat.*, JP 2003171334 A. However, this patent does not describe the effect of Lewis bases other than formamides. Formamides are generally effective in the reduction of aldehydes with trichlorosilane, see ref. 4.
- 7 For a pioneering study on aldol reaction of trichlorosilyl enolates, see: S. E. Denmark, K.-T. Wong and R. A. Stavenger, J. Am. Chem. Soc., 1997, 119, 2333.

- 8 Yields were determined by ¹H NMR analysis of the crude reaction mixture using dibenzyl ether as an internal standard.
- 9 ¹H NMR study of the reaction of benzalacetone with trichlorosilane in deuterated dichloromethane confirmed the formation of the corresponding (*Z*)-trichlorosilyl enolate (assigned by a NOESY experiment), which supports a six-membered cyclic transition state with the *s*-*cis* conformation of enones (Figure).

LB: Lewis Base

A similar mechanism has been suggested for borane reduction, see: G. P. Boldrini, M. Bortolotti, F. Mancini, E. Tagliavini, C. Trombini and A. Umani-Ronchi, *J. Org. Chem.*, 1991, **56** 5820.

- 10 Low diastereoselectivities (dr = 50:50 to 78:22) were observed in each case probably due to contributions of both catalyzed and non-catalyzed aldol processes, see ref. 7.
- 11 We have employed BINAPO as a chiral Lewis base catalyst for enantioselective allylation, aldol reaction and epoxide ring-opening reaction, see: S. Kotani, S. Hashimoto and M. Nakajima, *Tetrahedron*, 2007, **63**, 3122.
- 12 The minor *anti*-isomer is racemic, which is consistent with the fact that the non-catalyzed aldol process favors the *anti*-product in a similar system, see ref. 7.